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Interactions between life history and the environment 

 
Jason Matthiopoulos 2011 

      
 
Overview: The complex interactions between life history traits and the 

environment may favour or disadvantage single individuals or entire 

populations. These effects are difficult to intuit and their investigation may 

require the construction of stochastic, individual-based models. Here, we 

construct such a simulation, loosely based around the life history of female killer 

whales. We examine the implications on inclusive fitness of four different 

scenarios of resource richness and environmental variability. 

 

1. the study system 

 

 

The Killer Whale or Orca (Orcinus orca), is the largest species of the dolphin family. It is found in all 

the world's oceans, from the frigid Arctic and Antarctic regions to warm, tropical seas. Some killer 

whale populations feed mostly on fish while others hunt sharks, marine mammals, including sea 

lions, seals, walruses and even large whales and Great white sharks. 

 

There are up to five distinct killer whale types distinguished by geographical range, preferred prey 

items and physical appearance. Some of these may be separate races, subspecies or even 

species. Killer whales are highly social; some populations are composed of matrilineal family 

groups, which are the most stable of any animal species. Their sophisticated social behaviour, 

hunting techniques, and vocal behavior have been described as manifestations of culture. 

 

Females become reproductively active at the age of 15 and breed until they are 40. They have 

periods of polyestrous cycling with non-cycling periods of between three and sixteen months. The 

gestation period varies from fifteen to 18 months. Calves nurse for about 2 years after birth, but 

remain closely associated with their mother for about four years. Mothers maintain a level of 

parental investment for that period, leading to an inter-birth interval of five years. During those 

years, calves suffer from an annual mortality of 20%. After their fifth year, female calves survive to 

recruitment with a probability of 0.98. 

 

Females' life spans average 50 but may survive well into their 70-80s in exceptional cases. Males 

become sexually mature at the age of 15 but do not typically reproduce until age 21. Male killer 

whales generally do not live as long as females. In the wild, males average 30 years, with a 

maximum of 50–60 years in exceptional cases.  

 

 
Killer whale (Orca orcinus) 
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2. ecological theory  

 

The interplay between life history strategies and environmental variation has the potential for rich 

dynamics. Life history traits evolve as a result of persistent environmental drivers but, in the short-

term, the fitness of individuals and the fate of populations depends on environmental trends and 

the stochasticity around them.  As scientists, we will rarely be able to predict a-priori which aspects 

of a life history strategy will be beneficial for an animal living in a particular environmental regime. 

Simulation is an invaluable tool for achieving this. 
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3. mathematical theory 

 

 

■  Formalising dependence on covariates: Quantifying the effects of particular causes is the stock-

in-trade of most empirical scientists. Coming up with mathematical expressions for these 

relationships can be achieved either by mechanistic or empirical means. A mathematical model 

is called mechanistic when it has been derived from first principles. So, for example, a model for 

the global human population that takes into account births (by country) and deaths (by cause) is 

mechanistic at the level of demography, because it acknowledges the proximate causes of 

population change. In contrast, when we fit an exponential curve through the population data, 

we are using an empirical model, i.e. one that has the "right sort of form".  

 At their very simplest, empirical models can be defined on the basis of a function's domain, 

range and monotonicity. In other words, what kind of values a function takes as its input, what sort 

of values it produces as its output and whether it is purely increasing or decreasing.  

 For example, if we know that the amount of weight (w ) gained/lost by an individual organism is 

a simple, increasing function of the availability of two types of food ( 1x  and 2x ), we might express 

this with the empirical relationship 

 0 1 1 2 2w a a x a x  (1) 

Here, we have used a linear relationship in which w  can take both negative and positive values, 

the intercept 0a  could be thought of as a negative value that has some association with basal 

metabolic costs and the coefficients 1a  and 2a  give the relationship between weight gain and 

food availability for each of the two types of food. 

 In certain cases, the response variable can only take non-negative values. For example, we 

might be interested in the average number of offspring ( b ) that can be produced by an animal 

as a function of food availability. Then, we might consider a log-linear model, in which the linear 

predictor 0 1 1 2 2a a x a x  is exponentiated, 

 0 1 1 2 2exp( )b a a x a x  (2) 

In other cases yet, we might be interested in modelling a probability or a proportion. For example, 

what is the annual probability of survival ( s ) of an animal as a function of food availability? This 

may be formalised by a so-called logit model which looks like this 

 0 1 1 2 2

0 1 1 2 2

exp( )

1 exp( )

a a x a x
s

a a x a x
 (3) 

If you try very large and very small values for the variables 1x  and 2x , you will notice that this 

function is constrained to take values between 0 and 1, which is what we require of a probability. 
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4. R ingredients 

 

■  Generating random numbers: This is really easy. You first need to decide which distribution you 

want these random numbers to come from (uniform, normal, binomial, Poisson etc). Then, you 

need to specify how many numbers you want out of that distribution and finally, you need to 

specify the parameters of the distribution. Here are some useful examples: 

 

R command Explanation 
runif(2, 1,10) Generates two random numbers between 1 and 2 from the continuous 

uniform distribution.  
rnorm(100, 0, 10) Generates 100 draws from a normal distribution with mean zero and 

standard deviation 10. 
rpois(10, 5.3) Generates ten random numbers from a Poisson distribution with rate 5.3 
rbinom(10,1,0.5) Draws ten random numbers from a binomial distribution with 1 trial and a 

probability of success 0.5. 
rbinom(1,10,0.5) Draws one random number from a binomial distribution with 10 trials and 

a probability of success 0.5. 

 

Can you tell the difference between the last two examples? 
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■  Testing facts: Some times it is useful to test whether a fact is true or false. You may put the 

question to R as a mathematical statement. For example, you may ask if 2 is bigger than 3, 

 
> 2>3 

[1] FALSE 

 

Equality is tested with the symbol ==, 

 
> 2==2 

[1] TRUE 

 

We can test the validity of combined statements by bolting together different questions with the 

AND, OR operators. In R, these are written && and || respectively. Let's have a look at some 

examples: 

 

Plain-language question R-version R-response 

Is either of the following true?  1+1=2, 2+2=3 1+1==2 || 2+2==3 TRUE 

Are both of the following true? 1+1=2, 2+2=3 1+1==2 && 2+2=3 FALSE 

 

■ Conditional statements: Conditional statements are useful when you want to execute a set of 

commands, but only when a certain set of conditions hold. So, the sort of thing you might like to 

say in plain language is "If a set of conditions is satisfied then do something ". The programming 

structure if can be used for this purpose. Here is what it looks like in general 

 
If (conditions) 

 { 

 Commands 

 } 

 

The following example will first examine if the random number r is positive and then print a 

statement to say so. 

 
r<-rnorm(1,0,1)  

if (r>0) 

  { 

  print("positive") 

  } 

 

There is an extension to this conditional structure leading to compound conditional statements 

which loosely translates to "If a set of conditions is satisfied then do something, if they are not, then 

do something else". The following example will report whether the random number r is positive or 

negative. 

 
r<-rnorm(1,0,1) 

if (r>0) 

  { 

  print("positive") 

  } else { 

  print("negative") 

  } 

 

■ Iteration and loops: Iteration is the repeated application of a set of commands. In most 

occasions we can perform tasks iteratively by using the vectorisation capabilities of R. Sometimes, 

iterative tasks require a different programming device, called a loop, which comprises of 1) a loop 

declaration and 2) the main body of the loop. Here, we will introduce two types of loops, the for 

loop, performs a set of tasks for a predefined number of iterations. The while loop performs a set 

of tasks while a set of conditions hold.  
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In R, a typical for loop will look a bit like this: 
 

for (counter in min:max) #  This line declares the loop counter and range. 

 { 

 #  The main body of loop - the commands to be repeated. 

 } 

 

For example, the following will produce the first 21 terms of the sequence 1 100 35t ta a   

 

1 a<-c() 

2 for (n in 0:20) 

3  { 

4  a<-c(a, 100+n*35) 

5  } 

 

Here, line 1 creates an empty list a. Line 2 declares the loop i.e. it defines a counter n that will 

successively take the values 0 (min) to 20 (max). The  brackets in lines 3 and 5 enclose the main 

body of the loop, the parts that are to be iterated. Several lines of code can be enclosed in the 

main body but, in this example, we only have one, line 4, which uses the concatenation 

command c(), to add to the current list a, the new value 100+n*35. Since this value contains the 

counter n, it will be calculated anew with each iteration of the loop. To see how the loop 

operates, try inserting the command print(a) as a new line in-between lines 4 and 5.  Also, note 

that the brackets and main body of the loop is typeset towards the right. This makes it easier to 

identify on the screen or printed page where the loop begins and where it ends.  

 

In R, a typical while loop will look a bit like this: 
 

while (conditions) #  This line declares the loop conditions. 

 { 

 #  The main body of loop - the commands to be repeated. 

 } 

 

We can achieve the same result with a while loop as with a for loop. Here is an example 

 
1   n<-0 

2   a<-c() 

3   while (n<=20) 

4      { 

5      a<-c(a, 100+n*35) 

6      n<-n+1 

7      } 

 

Can you see how this works? A counter is initialised outside of the loop and incremented by one 

inside the loop. When the counter reaches a pre-determined size, then the loop ends. In this 

example, the for implementation was more economical than the while version. However, the 

while loop, really comes into its own when the number of iterations is unknown. In the following 

example, we toss a fair coin as many times as are required to get 20 heads. At the end, the 

program reports the number of trials that were conducted. You will notice that this number may 

change if you re-run the program. 

 
1   heads<-0 

2   trials<-0 

3   while (heads<20) 

4      { 

5      heads<-heads+rbinom(1,1,0.5) 

6      trials<-trials+1 

7      } 

8   trials 
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■  Setting out initial conditions and parameters: It is generally good practice to represent 

parameters by symbols whose numerical assignments are collected together at the beginning of 

the code, separately from its main body. This is for three reasons: 1) it gives an overview of the kind 

of numerical information required for the model, 2) the statement of the model in the main body 

of the code is more reminiscent of its mathematical description which makes it easier to find 

mistakes and 3) in many models the same parameter is repeated several times. Rather than 

having to trawl through the entire code and change the parameter’s numerical value in all these 

instances, it is only necessary to change its numerical assignment at the beginning.  

 

 

5. Practical tasks 

 

We will gradually build up to a simulation of the reproductive life histories of thousands of female 

killer whales, to investigate how the availability and variability of resources affects individual 

fitness, total reproductive output and the age of females at death. 

 

■1■ Read carefully the material in sections 1-4 above.  

■2■ Read through the tasks in this section.  

■3■ Read through the assessment components in the next section before you carry out any tasks 

 

Modelling a single female without a calf: 

■4■ We will use the variable co, measured in some arbitrary unit, to track the condition of each 

individual female. At recruitment (i.e. when they become reproductively active), females have a 

normal distribution of conditions with mean 100 and standard deviation 10.  Write a line of code 

that selects a random value for co, from such a distribution. 

■5■ Define the variable age to track the age of a single female. Set age to the appropriate value 

for a female that has just become recruited.  

■6■ The variable alive will take the value 1 if a female is still alive in any given year, and zero if it 

has died. Set it to 1, to begin with. 

■7■ Write a loop that runs while a female is alive and of a reproductive age. Within each iteration 

of the loop, do the following two things: (i) allow the whale to survive with a probability sr=0.8 and 

(ii) if it does, increment its age by 1. Run the loop and check the age-at-end-of-reproduction. 

■8■ The quality and variability of the environment will determine the ability of an individual to 

improve its condition during any given year. We assume that these annual condition increments 

are normally distributed and independent between successive years. We will represent the 

influence of the environment by the mean (enMu) and standard deviation (enSD) of that 

distribution. Hence, a high value of enMu indicates a rich environment and a high value of enSD 

indicates a variable environment. To begin with, set these values to 0 and 20 respectively.  

■9■ Write a variation of the loop in task 7 in which the condition of an individual female is 

changed by a random condition increment each year. Make the probability of survival sr 

depend on the following linear predictor: s0+s1*co where s0=-2 and s1=0.05. Run the loop to 

check the age at death. 

 

Modelling a single female with a calf: 

■10■ Define the variable calf that can take the value 1, if a female currently has a calf and 0 if 

she doesn't. Also, define the variables calfage to track the age of a calf and offspring to track 

the number of calves that become independent of their mothers. Initialise all of these at zero, 

outside your main loop. 

■11■ Within your loop, write a compound conditional statement that does the following: 

 

- If the female doesn't have a calf, then  

- calculate its breeding probability b as a function that depends on the linear predictor 

b0+b1*co (where b0=-10 and b1=0.1). 

- use this probability as part of a Bernoulli trial, to simulate the event of birth 

- if a calf is born, then set calf to 1, otherwise leave it at zero 
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- If the female has a calf, then  

- decrement the female's condition by the amount inv=10, corresponding to annual 

maternal investment.  

- decide randomly whether the calf is going to survive the year according to a fixed 

probability 

- set calf to zero if calf has died 

- set calfage to zero if calf has died, or increment it by one otherwise. 

 

■12■ Within your loop, after the statement produced from task 11, write a simple conditional 

statement that does the following: 

 

- If the calf has reached the age of independence 

- Increment the number of the mothers offspring 

- reset calf and calfage to zero. 

 

Run the entire code to make sure it works. Check out critical outputs such as age or offspring. For 

example, if your program generates more offspring than the final age of the female, then 

something is wrong. Go back over the code to find where the problem is. 

 

Modelling several females: 

■13■ We will need to store the total number of offspring that reach recruitment from each female 

whale and the age at which females stop  breeding. Create the empty lists recruits and ages 

for this purpose. 

■14■ Use a loop to simulate 1000 female life histories, each time storing the female's final age and 

its total number of recruited offspring into the lists ages and recruits respectively. Note that the 

total number of recruited offspring is not the same as the number of offspring that become 

weaned. 

 

Scenario 1: Rich and stable environment 

■16■ We will interpret the number of recruits produced by each female as its inclusive fitness. Set 

the parameters of the environment to enMu=20 and enSD=1. 

■17■ Generate a histogram of ages at end of reproduction 

■18■ Generate a histogram of inclusive fitness 

■19■ Calculate the average number of recruits produced by each female 

 

Scenario 2: Poor and stable environment 

■20■ Set enMu=2 and enSD=1 and repeat tasks 17-19. 

 

Scenario 3: Rich and variable environment 

■21■ Set enMu=20 and enSD=30 and repeat tasks 17-19. 

 

Scenario 4: Poor and variable environment 

■22■ Set enMu=2 and enSD=30 and repeat tasks 17-19. 

 

■23■ Comment on the effect of the environment on the fitness of particular individuals and the 

reproductive ability of an entire population. 
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6. Assessment 

 

 

Write a report, no longer than 3 sides of A4, that contains the following:  

■1■ Histograms and value from scenario 1. 

■2■ Histograms and value from scenario 2. 

■3■ Histograms and value from scenario 3. 

■4■ Histograms and value from scenario 4. 

■5■ A paragraph with your response to task 23. 

■6■ Fully commented Tinn-R code only for the complete simulation that you used to answer parts 

1-4 above. 
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